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LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
mission:

A. Makes any warranty or representation, express
or implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this report,
or that the use of any information, apparatus, method, or
process disclosed in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in this
report,

As used in the above, 'person acting on behalf of the
Commission' includes any employee or contractor of the
Commission to the extent that such employee or contrac-
tor prepares, handles or distributes, or provides access
to, any information pursuant to his employment or con-
tract with the Commission.
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ABSTRACT

A generalization of the one-dimensional Peaceman and Rachford method
is derived. In this generalization simultaneous equations are set up and
solved once for all values of the temperature over the entire two-
dimensional mesh. This method is extended to treat nonlinear heat flow
and it is unconditionally stable, both for linear and nonlinear problems.,
In the nonlinear case an iterétive scheme is employed to solve the simul~-
taneous equations which provides second-order convergence. This method
differs from the well-known alternating-direction method in that the
alternating-direction method does not solve the complete set of simultan-
eous equations at each time step, but only a one-dimensional facsimile of

them, and its range of applicability is more restricted.
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1. INTRODUCTION

We develop en implicit scheme for the numerical solution of the two-
dimensional heat-flow problem. In the linear case we are able to solve
exactly the full two-dimensional set of implicit equations. This solu-
tion is possible because we choose a difference scheme for which the equa-~
tions are factorable into two one-dimensional sets. This factorability
is basic to the method.

We extend this method to nonlinear equations and nonrectangular re-
gilons by the use of an iterative scheme to solve the implicit equations
obtained. This scheme provides second-order convergence, and in the cases
we have tested only a very few iterations per time step were required.

The method is proved to be unconditionally stable both in the linear
and nonlinear cases. (We consider only & special set of nonlinear prob~
lems in the stability analysis.) We prove stability in the linear case by
the usual type of Fourier analysis and superposition of solutions. In the
nonlinear case we show that the norms of the solutions of the difference
equation with homogeneous boundary conditions tend to zero as time tends
to infinity. This method is limited in mesh size and time-step length

only by the requirements of accuracy and not stability.
By way of illustration we include a discussion of two numerical

exemples.




2. THE LINEAR CASE

The basic partial differential equation which we wish to consider is

2 2
>.4

vhere x and y are space coordinates, t is time, and @ is a constant. We
wish to approximate this differential equation by a finite difference
scheme to allow the approximate numerical calculation of the function 8.
If we denote spatiel points by either the pair of indices (ij) or the
pair (kl), and time by n, then we may write, using the Einstein summation
convention, a general, linear difference scheme as

iJn = 1
Ber 633 ™ 8y (2.2)

where the na.k‘¢ depend on quantities with time earlier than n. We wish to

ij
ke

easgy calculation of nekz

differencing scheme (B?; o 5?8;, where 5? is the Kronecker delta) has

both these properties; however, such a scheme is well known to have the

choose a particular B °, which will both represent (2.1) and allow for

for successive values n, Clearly, an explicit

disadvantage of being only conditionally stable. Implicit schemes are
usually unconditionally stable. One such implicit scheme is the Douglas-

Peaceman alternating-direction method [1]. It represents the application
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of the one-dimensional Bruce, Peaceman, Rachford, and Rice [2] method to

two dimensions. It has the disadvantage that only one direction is
treated exactly at each advance in time. We feel it desirable to choose
a differencing scheme which will permit an exact treatment over the en-

tire two-dimensional mesh. With this view in mind we note that if we may

ij
factor Bkl
1j o ALl 5d
By = A B (2.3)
then we may triangularly resolve Ai and Bi separately as was done in one

dimension by Bruce, Peaceman, Rachford, and Rice and obtain a method for
the direct calculation of the nekl from mekl with m < n. We shall now re-
strict ourselves to 9-point difference schemes, i.e.,

Bii =04if |i ~k|>1, or |§ - 2] >1 (2.4)
It will be shown later that 5-point difference schemes are unfactorable.

Thus let Ai and BJ be triple-diagonal matrices,
i i+1 i i-1
Ak = (x.I x x28k + x58k )] : )
2.5
J o J+1 J 59-1
B, (y161 A y3°1 )

In order to represent Eq. (2. 1), must be a numerical representation

kt
of the laplacian plus whatever part of the representation of the time de-

rivative involves @ at the advanced time. Thus (suppressing the super-
script n),

lJ
kl 61. represents B0 kl Vﬁe

" (2.6)




From the symmetry properties of the Laplacian, we may restrict the values

of B;i (allowing a different mesh-spacing in the x and y directions) to

k+1,2 _ _k-1,f _
Bt = By’ =
k, £+1 ok, 2=
Byl = By A
(2.7)
k+1, 241 kl,0-1 _ k-1, 241 _ _k~1,8-1 _
) = By = By = By =H
k! _
Bt = ¢
Expending (2.3) by use of (2.5) we get from (2.7)
M= X395 = XY,
A= Yi¥%, = y3x2
(2.8)
W= XYy = X9y = X¥5 = XYy
£ = X5¥5
*
These nine equations in six unknowns imply the restrictions
nA= ug (2.9)
Xy = %y Yq = Vs (2.10)

It should be noted that if p is zero, as for a five-point scheme, then

*
More generally it can be shown that if we let

ij _ omn . ij

Bgt = Ykt Pmn
with wﬁ? =0 when k =-m>1,k-m<0, £L-n>1,0orf-n<o0
and b Y =0 wheni-m>1,i-m<0, j-n>1,0rJ-n<o,

then either (2.9) or & = Ly must hold.

=10~



by (2.9) either A or n must also be zero so that no factorable five-point

scheme is possible.

To obtain a proper representation of the Laplacian, we consider the

Taylor series expansion of 6,

o(x+oxc, y+0y) = 6(x,y) + bdx + cly + a(&x)? + e(x)(2y) + £(ay)?

(2.11)
+ glox) + n(ax)y + i(a)(29)? + 3(ay)>

Applying the difference scheme (2.7) to (2.11) we obtain

iy
Bki 913 = (bp + 21 + 2\ + §)ekl

5 o (2.12)
+ (bg + 27) a(ax)® + (4 + 21) £(2y)
As
%6 629
. + S;E =2(da + £) (2.13)
We must have, by (2.6),
(2u + () =1 (2.1ka)
(2n + N(&y)% = 1 (2.1%0)
by +2n+ 2N+ & =B (2.14e)
Solving (2.9) and (2.14) we obtain
b= L (2.152)
B(2x)(2y)®
= (&x)72 [1 . ] (2.150)
n= B(2y)°

-2 ) (2.15¢)
= 1 -
N = (&) [ B(Ax)2:l

-11-




We may now solve (2.8) and (2.15) for x
-1
ij 2 2 i+1 2 i i-1
Bll{i = [B(AX) () ] {Bk" + [B(&)° -2] & + & }

X {6i+1 + [B(Ay)2 -2] Si + 6%’1}

or,
Bl = [s(a2(an?]” I
where, letting
u = B(Ax)2 -2
B(2y) - 2

v

we define

and

BY

z

-12-
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4 and v, us,

(2.154)

(2.16)

(2.17)

(2.18)

(2.19)



We may factor Ai and Bi as follows:
u-s0 0 0O O

1u-s.'000

1 u-320 0

3

0
0O O 1 u-s5,0
0 O o ‘Iu-su

(2.21)




where

- - -1
8y = 0 sk (u - sk_1)
and
v-ro ¢ 0O O ©0
1 v-r1 0 0] 0
0 1 v-r2 0] 0]
3 n i 0] 0 1 v-r5 o)
Bl = wl bm =
y ey 0 0 0 1 ver
N
[ 1 rr 0 0 0
0 1 r2 (0] 0
0 0 1 r, O
3
0 0 0] 1 r
X y
0] 0 0O O 1
where
r.=0 r,=(v-r )"1
0 2 2-1

If we now define

1l

-

(2.22)

(2.23)

(2.24)




n _ .1 .Jdnr
By = £ ybw 0 (2.25)
and
o v ®
Vs =k g7 (2.26)

then (2.2) becomes, by (2.17), (2.21), aad (2.23),

Vi, g, = B(ax) 2 ()2 o g (2.27)

Now as w:? involves only values of (uww) such that v < k, ® < £, we may
proceed from low index numbers to high ones and solve (2.27) for the nguD
by straight-forward elimination. Then as *bi ng involves only values of
(13) such that i > v, j > ®, we may proceed from high index numbers to
low ones and solve (2.25) for the neij by straight-forward elimination.

The formulae involved may be written conveniently as

2/, \2 n n n n
n Blax)(2y) 55 " Bi1,ju1 " (v - r3-1) 811,35 " (u-s;_,) 1 ,5=1
&3 v-r Ju-s )
J-1 i-1
(2.28)
n _n _ D _ B - n
O15 7 85 7 1 B, T Ty Br T BT B (2.29)

with appropriate modifications at the boundaries.

-15-



3. GENERALIZATION TO THE NONLINEAR CASE

In this section we shall consider generalizing the method given in

Sec, 2 to the solution of nonlinear partial differential equations of the

type
2 2
a—}f_’; + -a—-‘% = h(x,y,V) g—i‘ (3.1)
ox oy

In the linear case we modified the equation under consideration by adding

BY to each side. Here we obtain
BY + v?“' = By + h(x,y,‘lf) %I (3.2)

In the linear case we chose B so that the right-hand side was indepen~
dent of # at the advanced time. Here this is not possible. Let us, how-

ever, choose

0>pB > - AMinimm {h(xi,yj,wij) + Wij g% } (3.3)
iJ

i,d
Wwhere A is the coefficient of ¥ at the advanced time in the representation
of the time derivative. In the heat flow problem h will be positive and
in most cases of interest (see Sec. 6) will vary roughly like ¥/, where
0<y<1. Let us now guess a value of ¥, and substitute it in the right

side of the difference equation aspproximation to (3.2). We may now calcu-

late by the method of Sec. 2 the values of *13 which appear on the left side.

-16-




If our guess was- close to the true solution, we may expand everything to
first order in the error. Let

*

Wguess = Wtrue + e (3.4)
Vealeulated ~ Yerue * €
Then, by (3.2)
) _ an| T
Beij + Vzeij = [% + Ah(ij) + A Aﬁj S ij]eij (3.5)

where A Aij is the representation of the time derivative. Let us re-~
strict the possible choice of representations of the time derivative

such that (all ¥ > 0)
i< (3.6)

This condition will be satisfied if, for instance,

n _n _ n=1
‘ij = ¥ (3.7)

and it is satisfied for our choice [(4.1)] as long as the temperature
does not drop by a factor of more than 4 at one time step. We shall neg-
lect Vzeij as small in (3.5) because we expect our guess to have only
small systematic errors, rather than the type of errors which would create

large errors in the second derivative. Thus,

sy, I oh
iPKlJyk éngEiJ]'* *
= |1 + €

i B 13 7 " %45 Sig (5.8)

€

Because of our selection[(3.3)] of B, X must be positive or zero. There=

fore, if we take a weighted average of Wguess and V¥, 1oulateq 25

-17-



Wcalculated X Wguess

*

then ¥' will agree with Wtrue to within second order in € . If ¥' is now
used as & new guess, we may continue our iteration procedure and be as-
sured of second-order convergence. We shall see in Sec. 6 that this

scheme provides very rapid convergence in a sample case.

-18-



L, STABILITY
let us first consider the stability of our method as described in

Sec. 2 for the case of linear heat flow., We pick a representation of

g% which, to within terms of third order; gives gg evaluated at the

advanced time, namely,

Z%E (gen - 26" & %en‘a) (4.1)
From (2.1) and (2.6) we see that B of Sec. 2 is
S 2
g 20Pot (4.2)

Let us obtain the exact solutions to our difference equations. We may ex-
pand any function on the mesh points in a Fourier series, so it will be
sufficient to consider the behavior of

n

055 = 6, €XP (ib1xi + ibayj) X(n) (4.3)

We shall assume that

X(n) = z8/4 (4 .4)

Substituting (4.3) into (2.1) as expressed by (2.16) we obtain, making

use of trigonometric half-angle formulae,

-19-




b &x o
r= [ B(&x)2 + b sin® <-}3—->] { B(2y)% + b stn® (-g—“”)] (pawery) ™

(4.5)
1,-2
- 5 VA

Thus,

27! =2 3/k -3 (4.6)

By definition, as b, and b, are real, I'> 1. Thus, for I' < 4/3, Z _ eare

2
both real and

1 1
— S - R
1>2 >35> Z# 3 (L.7)
Irr> h/5, then Z+ are both complex and

Izil = (5[')"/2 <% (4.8)

Therefore as lZ+l < 1, the difference scheme is unconditionally stable.

In the limit as &, 4y, and & tend to zero,
(2_)"/% & exp [- (2 + bg)t]

(z+)t/& -»3"*'/& exp [13 02(b$ + bg)t]

(4.9)

The root Z_ represents the analytie solution of (2.1). The root Z+
enables us to represent any computational error involved in advancing
from time n - 2 ton - 1. We see from (4.7) and (4.8) that this error
is demped by at least a factor of 2 at each time step.

The behavior of the solution of the difference equations in the lim~
it as t < o with & A0 is also of interest. This behavior may be ob-

tained by setting 2 = 1 in (h.5) and removing the reality requirement on

-20-




b1 and b2. Thus, for the steady state

b, ox) ("1 b 2y\|-1
(Asx)2 [u sin® (—12——):} + (Ay)a[u gin® ( 2 >} = - 2a2At/5 (4.10)

If we have enocugh mesh points so that Amb1 <<1, Awba < < 1, then we may

expand the sines to first order and by some manipulstion obtain

2 .2 2
b° + b 20200t

10 2 1 (&.11)
b 3+2b20£21 o

In the differential equation, the steady state solution 1s characterized
by
2 2

by + by =0 (4.12)

In order to get a good steady state solution we see from (4.11) and (L4.12)
that b?aaﬁm mist be small. In order to get a good time-dependent solu-
tion we must be near the limit given in (4.9). This requires that b, &x
and baéy be small, and b%aacm be small. Hence, we will get a good asymp-
totic solution when the requirements are met for a good time-dependent
solution. We see from the above analysis that this method is limited in
mesh size and time-step length only by the requirements of accuracy and
not by stability.

In the nonlinear case, the analysis is more difficult but proceeds

in a similar manner. We shall not investigate stability in the general

case (3.1) but shall restrict h to be of the form

h(x)y}‘l’) = f(ny)“fy (4.13)

where O > 7 > -2. We shall for convenience consider only the case of

21



homogeneous boundary conditions. We can, of course, simlate nonhomo-
geneous boundary conditions by letting f be very large near the bound-
ary and so make a region near the boundary an effective heat reservolr.
In this analysis we follow Bellman [3] and extend his analysis to the
nonlinear case. We remerk that it is both necessary and sufficient for

stability in the usual sense that
R ¢ 2

hold for any initial conditions and homogeneous boundary conditions. We
shall prove that our differencing scheme is unconditionelly stable in
the sense that (4.14) holds for any (Ct/(éx)a).

Let us fix our attention on a time, which we shall denote by n. Let
us attempt to separate variables. From (2.17) and (3.1) we obtain the

equation which must be satisfied for some separable component, v. It is

[[otmoan?]™ a3 - s o 53} 2, o

(4.15)
= 52 Bk £,7,) Ty (o) [1 - % 27 (o) + -13- Z'a(u)]
where we assume that
B, 5(0) = 2(0) My, (o) (.16)
and that
n n
vyo= % wij(u) p(v) (4.17)

In fixing our attention on a time n we imagine that nwij is somehow known.

If we set

22



= [1 - % 27 (v) + % z“2(u)] = (4.18)

then it is easy to show that the solution of (4.15) is the same as the
solution of the following problem. Let ( suppressing the n and V)

2 >
. Z ("’mbz - “’kz) N (“’k,m - ¥y \
Bx &y )

X, 2

o (4.19)
) (Vw1 041 = Viwr, 0 ™ Vi 001 F Yyey)
B(2x)® (2y)2
and
_ n 2
¢= Z n(k, £,%, ) (v, )% = 1 (4.20)
k, 2

Find the extrema of F + AG subject to (4.20) and homogeneous boundary
conditions. If we have N X M interior mesh points, then the theory of
quadratic forms [4] assures us, as B is negative, that there exist NM
orthogonal vectors [nwkl(b)] which satisfy (4.19) and (4.20) and there-

fore (4.15). The orthogonality is in the sense that

(e (o), P, (0)) =L n(o L) 4,00) ) = 8, (4.21)

As A\ can be shown to be the negative of F, we must have
A<O (4.22)

We may now solve (4.18) for the corresponding values of Z+(D). Equation

(4.18) implies that for the I' of (4.5) we get

r=1-%7\&>1 (&.23)

by (4.22). Thus

Z+| < 1 as in the linear case. Let us now expand

23



n
‘l’i,j

reproduce n-1wij and n-2wij it will be necessary to use parts propor-

tional to Z+ and to Z_; however, we have enough freedom to effect this

in terms of our set of orthogonal vectors [nwij(u)] . In order to

decomposition as nwii is assumed to be calculated by our difference
scheme from the values at the two previous times. Let us now compute

the time derivative of the Norm of nwij

d ES n n, 12{_ _}; o n,  \2+y
3% {k,l h(k’l: "’13)( wij) }— Y f(k,l)&( wij)
anw (h.2’+)
= n n k!
(@ +7) £ 004, ) Ny 55
If we now approximste %% by an expression of the form of (4.1) and

use our expansion in terms of nWij(D), then, if p(u) denotes the co-

n .. n
efficient of Wij(u) in wij’ we get

g%-Norm.(nWiJ) = (2 + 7) % [p(v) |2 o)

(%.25)
< Max [Mv)] (2 + 7) Norm (nq;ij)
o]

We must now examine the behavior of M%x [A(v)]. First let us con-
sider the maximum attained by M%x [Mv)] with respect to all variations
of components for a fixed Norm. As this represents continuous varia=-
tion over a closed and bounded set, the maximum of Max [(AM(v)] must be

v

attained at some point of the set by Weierstrass' theorem. However,

applying the arguments that lead to (4.22) we see that for fixed Norm,

Mv) < MNorm) < 0 (4.26)

24 -



We may consider a variation in Norm by simply scaling all the vkl‘ It

easily follows from (4.19) and (4.20) that for any Norm
-7
n
AMw) < N [Norm ( "’13)} (4.27)
Thence, by (4.25) and (4.27) we have
1=y
g% [Norm (nwij)} < KO(2 + 7) [Norm (nWiJ)J (4.28)

Thus as 0 > ¥ > -2, and AO < 0, we see that the Norm must decrease to
zero. In the linear case (y = 0) this decrease is exponential. This
proof is subject only to the proviso that &t be small enough so that
(h.1) wlll give us an approximstion of the time derivative of the Norm
that reproduces the sign properly. As the Norm tends to zero, we see
that our scheme 1s unconditionally stable, at least for this special
class of problems. It should be noted that both the diffusion equation
[2] and the radiation transport equation with power-law temperature-
dependent opacity belong to this class.

Ansalogous arguments for the nonlinear case corresponding to the
arguments involving (4.10) to (4.12) indicate that the requirements for
obtaining good time-dependent and steady-state solutions are about the
same as the requirements for obtaining such solutions in the linear
case. Therefore, the nonlinear case has the same properties so far as
stability and accuracy are concerned as the linear case. The only way
in which the numerical solution to the nonlinear case differs essen-
tially from the linear case in rectangular coordinates is that an itera-

tive procedure must bhe used on each time-step in the nonlinear case.

-25-




5. EXTENSION TO NONRECTANGULAR REGIONS AND THREE-
DIMENSIONAL PROBLEMS WITH AN AXIS OF SYMMETRY

Consider a simply-connected, two-dimensional region with more than
one boundary point. Riemann's theorem [5] implies that we may map it by
a one-to-one conformel trensformation into a rectangular region. This

transformation amounts to a change of independent variables. If

u = u(x,y) v = v(x,y) (5.1)

in such a conformal mepping, then (3.1) is transformed [6] into

2 2
82 <§—u—g + 'Z‘J%) = h(u,v,\V) %% (5.2)

£ (3
Y- &

= &(u,v)

where

(5.3)

Thus, defining

H(u:V:‘V) = %m (5.4)

we have

(5.5)

-06-



We may therefore first transform our region into a rectangle and then
solve by the method of Sec. 3. It should be noted that when a nonrece
tangular region is to be solved, the iterative scheme of Sec. 3 is neces-
sary, even in the linear case.
One simple example of this method is a transformation to polar co-
ordinates. Let
u+ iv = log(x + iy) (5.6a)

or

u=logr v=0 (5.6v)

where r and @ are the standard polar coordinate radius and angle. Equa-

tion (2.1) becomes

2 2
aa+ae_e2ua-2_g_:; (5.7)

P
The singularity near the origin (u = -0 as r -+ 0) should be noted. This
transformation actually carries a slit annulus into a rectangle. There
are other more complicated transformations which will carry a whole cir-

cle into a rectangle. For-instance,

jf x+Hiy _
u+ iv = Jg (v - wy) aw ) (5.8)

For problems with an axis of symmetry, we adopt cylindrical coordi-

nates as the basic point of departure. The lLeplacian is

2 2
oy, 9% (5.9)

2
ng = é-i + 1 o¥ + A
ror r2 awa bza

ar2

As we sssume an axis of symmetry we may choose ocur coordinate system so

-27-




¥ is independent of ®. Let us set

1
o =1y (5.10)

Thus Eq. (3.1) becomes

2 2
0w , ow _ aw W

From the point of view of numerical solution we are free to add a term
involving only @ and independent of any derivatives, and the method of
solution proposed in Sec. 3 is still applicable. It should be noted that
the iterative scheme will have to be modified to include this term, and
if the coefficient of w at the advanced time contributed by the right-
hand side of the difference equation analogue of (5.11) may change sign,
we may no longer pick B so that the error will change sign everywhere be-
tween the guessed and calculated values of w, but we must in some regions
extrapolate for a new guess of w, rather than interpolate throughout as
we did in Sec. 3.

The boundary condition to be applied along the axis of symmetry is

géigg ?; =3 : (5.12)

This condition ensures that ¥ will be finite on the axis.

that

For many problems with an axis of symmetry, cylindrical coordinates
are not the most convenient. Other axial shapes may be treated by con-
formally mepping them into a rectangle. A sphere is conveniently

treated by transforming (5.11) by (5.6) where we, of course, consider

-28-



only the right half r-z plane (-n/2 < v < n/2). Thus for spherical co-

ordinates we get

— +—% = e~ h(u,v,n) %-»‘E - (5.13)
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6. NUMERICAL EXAMPIES

In order to illustrate the method described above we programmed it
for an IBM 704. Two sample calculations are described.
We set up initial conditions corresponding to the solution of the

lineaxr problem,

&(x,y,t) = sin (le) sin (-’ix) exp <— ;”—i’a‘—aﬁ) (6.1)

We chose oPat/( Ax)2 = 1.02392228 so that the amplitude would be dimin-

ished by a factor of 10-1/16

at each time step. This choice enables us
to check the accuracy at many times without excessive labor in calculat-
ing the analytic values. We ran this calculation with mesh points 150
apart (11 X 11 interior points), and advanced it 320 time steps. It was
found that over the range of 20 decades through which the solution passed,
the only discernible numerical error was a truncation error (the 7O

. does not round, but truncates instead) that caused the solution to de-
crease by an additional factor of (1 - 5.4 % 10-8) at each time step.
When a fixed number of decimal places are carried, the truncation error

is expected to be proportional to ah(At)a/[(Ax)a(Av)al. The difference

between the solution of the difference equation and the differential



equation 1s that time flows 2.5 per cent more rapidly in the latter case.
It should be noted that the explicit scheme is unstable for this case.

The calculating time for this case was about 6 minutes, or about 10 milli-
seconds per cycle point.

For our other example we chose radiation flow in a material medium.

The equation is
P(e") = 16 2 (6.2)

If we let ¥ = x~+/3 e“, (6.2) becomes
= yyd O
Py = wyt (6.3)

[{If there were a power-law temperature-dependent opacity, the equation

would be
s
9-(6996%) = 16K %% (6.4)
By use of the identity .
- -
" = == v +n (6.5)
and the transformation
v =9 (6.6)

we can put (6.4) in the form of (3.1).]

For our sample calculation we picked B(Ax)a = B(Ay)a = «1,5 and
used 11 X 11 interior mesh points. The other constants were chosen so
that this is an optimal iteration, as defined by (3.5). For initial

conditions we chose

¥(x,y) = 1 - sin (2¥) in(&?{-) (6.7)
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and we maintained the boundaries at unit temperature. We added 0.01 to
¥ at the central point to prevent it from vanishing. Initially some 10
or 12 iterations were required per time step, but after 15 time steps,
only about 2 iterations per time step were required for three-place ac-
curacy. We make the initial guess of ¥ at each time step by a linear
extrepolation from the two previous times. The running time for this
calculation was about 15 minutes for 120 time steps, or about 20 milli-
seconds per cycle point. From runs with other values of B(Ax)a we es~
timate that the accuracy of this solution is about 2 to 3 per cent.

It should be noted that some care must be exercised to prevent
the guessing of a negative temperature, as the occurrence of tempera-
tures of different signs produces an instability which causes the

solution to diverge.

-32a




REFERENCES

J. Douglas, Jr., and D. W. Peaceman, Numerical solution of two-
dimensional heat-flow problems, A. I. Ch. E. Journal 1, 505-512
(1955).

Ge H. Bruce, D. W. Peaceman, H. H. Rachford, Jr., and J. D. Rice,
Calculation of unsteady-state gas flow throu orous media,
Trans. Am. Inst. Mining Met. Engrs. 1 8, 79-92 !19535.

R. Bellman, On the weak and strong stability of numerical solu-
tions of partial differential equations. 1. The Heat Equation,

Princeton University Report AECU-3275 (1958).

G. Birkhoff and S. Maclane, A Survey of Modern Algebra, Chap. IX,
sec. 9, The Macmillan Company, New York, 1951.

C. Caratherdory, Conformal Representations, Chap. V, University
Press, Cambridge, 1932.

E. T. Copson, Introduction to the Theory of Functions of a Com-
plex Variable, Chap. VIII, Clarendon Press, Oxford, 1948,




